The Second Fundamental Theorem of Calculus

-In all the definite integral examples we've done so far we've had the bounds be defined as constants from a to b.

$$
\int_{a}^{b} f(x) d x
$$

-In a different situation there might also be a need to make the upper limit of integration be variable as opposed to a finite number.

$$
F(x)=\int_{a}^{x} f(t) d t
$$

-Take note how "little f " is a function of t but the resulting "big F " is a function of the upper limit of integration, x.

Example

Evaluate $\int_{0}^{x} \cos (t) d t$ at $x=0, \pi / 6, \pi / 4, \pi / 3, \pi / 2$.
-One way to do this would be to do five separate integrals one for such of the upper limits.
-However, if we treat x as a constant to start with we obtain a much simpler solution:

$$
\left.\int_{0}^{x} \cos (t) d t=\sin (t)\right]_{0}^{x}=\sin (x)-\sin (0)=\sin (x)
$$

-Now using $F(x)=\sin (x)$ you can obtain:

$$
F(0)=0, F\left(\frac{\pi}{6}\right)=\frac{1}{2}, F\left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}, F\left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}, F\left(\frac{\pi}{2}\right)=1
$$

-You can think of this action of evaluation the area under $f(t)=\cos (t)$ from $t=0$ to $t=x$ as accumulating the area under the cosine curve from $[0, \pi / 2]$.
-The interpretation of the integral as an accumulation function is often used in applications of integration.
-As with other integration we can check the result of our work by differentiating the result.

$$
\frac{d}{d x} \sin (x)=\cos =(x) \quad \int_{0}^{x} \cos (t) d t
$$

-Note that this is the same thing as our original problem with the variable now $a x$ instead of a t.
-This leads to a Second Fundamental Theorem of Calculus.
-If f is continuous on the open interval I containing a, then for every x in the interval,

$$
\frac{d}{d x}\left[\int_{a}^{x} f(t) d t\right]=f(x)
$$

Example

Evaluate $\frac{d}{d x}\left[\int_{0}^{x} \sqrt{t^{2}+1} d t\right]$
-Since $\sqrt{t^{2}+1}$ is continuous we can use the Second Fundamental Theorem of Calculus and write

$$
\frac{d}{d x}\left[\int_{0}^{x} \sqrt{t^{2}+1} d t\right]=\sqrt{x^{2}+1}
$$

Example

Find the derivative of $F(x)=\int_{\pi / 2}^{x^{3}} \cos (t) d t$.

$$
\begin{aligned}
& \left.\int_{\pi / 2}^{x^{3}} \cos (t) d t=\sin (t)\right]_{\pi / 2}^{x^{3}} \\
& =\sin \left(x^{3}\right)-\sin \left(\frac{\pi}{2}\right) \\
& =\sin \left(x^{3}\right)-1
\end{aligned}
$$

-Now differentiating this we get

$$
\begin{aligned}
& \frac{d}{d x}\left[\sin \left(x^{3}\right)-1\right] \\
& =\cos \left(x^{3}\right)\left(3 x^{2}\right)
\end{aligned}
$$

Using this result we can generalize the $2^{\text {nd }}$ Fundamental Theorem to be:

$$
\frac{d}{d x}\left[\int_{a}^{u} f(t) d t\right]=f(u) \frac{d u}{d x}
$$

Example

Find the derivative of $F(x)=\int_{x}^{x^{2}} \cos (t) d t$.

To evaluate when the bounds of integration are both functions, use some integral properties to rewrite.

$$
\begin{aligned}
& \int_{x}^{x^{2}} \cos (t) d t=\int_{x}^{0} \cos (t) d t+\int_{0}^{x^{2}} \cos (t) d t \\
& =-\int_{0}^{x} \cos (t) d t+\int_{0}^{x^{2}} \cos (t) d t \\
& =-\cos (x)+2 x \cos \left(x^{2}\right)+C
\end{aligned}
$$

Average Value of a Function

If f is integrable on the closed interval $[a, b]$, then the average value of f on the interval is

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Example

Find the average value of $f(x)=3 x^{2}-2 x$ on the interval $[1,4]$.

$$
\begin{aligned}
& \frac{1}{b-a} \int_{a}^{b} f(x) d x=\frac{1}{4-1} \int_{1}^{4}\left(3 x^{2}-2 x\right) d x \\
& =\frac{1}{3}\left[x^{3}-x^{2}\right]_{1}^{4} \\
& =\frac{1}{3}[64-16-(1-1)]=\frac{48}{3}=16
\end{aligned}
$$

